## The Hierarchy of Evidence



The Hierarchy of evidence is based on summaries from the National Health and Medical Research Council (2009), the Oxford Centre for Evidence-based Medicine Levels of Evidence (2011) and Melynyk and Fineout-Overholt (2011).

- I Evidence obtained from a systematic review of all relevant randomised control trials.
- II Evidence obtained from at least one well designed randomised control trial.
- III Evidence obtained from well-designed controlled trials without randomisation.
- IV Evidence obtained from well designed cohort studies, case control studies, interrupted time series with a control group, historically controlled studies, interrupted time series without a control group or with case- series
- V Evidence obtained from systematic reviews of descriptive and qualitative studies
- VI Evidence obtained from single descriptive and qualitative studies
- VII Expert opinion from clinicians, authorities and/or reports of expert committees or based on physiology
- Melynyk, B. & Fineout-Overholt, E. (2011). *Evidence-based practice in nursing & healthcare: A guide to best practice (2<sup>nd</sup> ed.).* Philadelphia: Wolters Kluwer, Lippincott Williams & Wilkins.
- National Health and Medical Research Council (2009). *NHMRC levels of evidence and grades for recommendations for developers of guidelines* (2009). Australian Government: NHMRC. <a href="http://www.nhmrc.gov.au/\_files\_nhmrc/file/guidelines/evidence\_statement\_form.pdf">http://www.nhmrc.gov.au/\_files\_nhmrc/file/guidelines/evidence\_statement\_form.pdf</a>
- OCEBM Levels of Evidence Working Group Oxford (2011). *The Oxford 2011 Levels of Evidence*. Oxford Centre for Evidence-Based Medicine. <u>http://www.cebm.net/index.aspx?o=1025</u>

| <b>Reference</b> (include title, author, journal title, year of publication, volume and issue, pages)                                                                                                                                                    | Evidence<br>level<br>(I-VII) | Key findings, outcomes or recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| McCormack, K. (2003). Endotracheal suctioning: A<br>review and study into practice. <i>Journal of</i><br><i>Neonatal Nursing</i> . 9(2):48-54.                                                                                                           | V                            | <ul> <li>Study to review suction practices of 226 nurses from 22 neonatal units</li> <li>Factors covered: frequency of suctioning, number of practitioners and gloves, size and type of catheters, depth of suction duration of sucking, hypoxaemia during suction, suction pressure, saline installation</li> <li>Above factors related to available research regarding best practice for each factor</li> </ul>                                                                                    |
| Pritchard, M.A., Flenady, V., & Woodgate, P.<br>(2003). Systematic review of the role of pre-<br>oxygenation for tracheal suctioning in ventilated<br>newborn infants. <i>Journal of Paediatrics and Child</i><br><i>Health</i> . 39(3): 163-165.        | IV                           | <ul> <li>Review of evidence related to short term pre-oxygenation benefits versus long term morbidity</li> <li>The decision whether to pre-oxygenate for tracheal suction in preterm ventilated neonates cannot be answered by this review</li> </ul>                                                                                                                                                                                                                                                |
| St John, R.E. (2004). Protocols for Practice. Airway management. <i>Critical Care Nurse</i> . 24(2): 93.                                                                                                                                                 | VII                          | • Discussion of clinical indications for ETT suction, amount of suction pressure required, suction catheter size, necessity for normal saline instillation                                                                                                                                                                                                                                                                                                                                           |
| Tingay, D.G., Copnell, B., Grant, C. A., Dargaville,<br>P.A., Dunster, K.R. & Schibler, A (2010). The effect<br>of endotracheal suction on regional tidal<br>ventilation and end-expiratory lung volume.<br><i>Intensive Care Medicine.</i> 36: 888-896. | 111                          | <ul> <li>Examines impact of different ETT suction techniques on regional and<br/>end-expiratory lung volume and tidal volume in an animal model of<br/>surfactant-deficient lung injury</li> <li>Suction catheter size exerted a greater influence than suction method<br/>alone on lung volume loss</li> <li>Recovery of regional lung volume and tidal ventilation after suction was<br/>rapid and uniform in this animal model, regardless of the suction<br/>method and catheter size</li> </ul> |

| Copnell. B., Dargaville, P.A., Ryan, E.M., Kiraly,<br>N.J., Chin, L.O.F., Mills, J.F., & Tingay, D.G. (2009).<br>The Effect of Suction Method, Catheter Size, and<br>Suction Pressure on Lung Volume Changes During<br>Endotracheal Suction in Piglets. <i>Pediatric</i><br><i>Research</i> : 66 (4): 405-410.                                                   |    | <ul> <li>Suction pressure and catheter size effects on lung volume during open<br/>and closed endotracheal suction</li> <li>Individual and combined effects of suction variables on lung volume<br/>were examined</li> <li>Three suction methods used: open, closed in-line and closed with side-<br/>port adapter</li> <li>Closed suction has no advantage in the prevention of volume loss in this<br/>animal model</li> </ul>                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hough, J., Trojman, A., Schibler, A. (2016) Effect<br>of Time and Body Position on Ventilation in<br>Premature Infants/ Pediatric Research: 80 (4):<br>499-504                                                                                                                                                                                                   | 11 | Changes to patient body position may help with lung recruitment when ventilated                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Goncalves, R.L, (2015) Endotracheal Suctioning in<br>Intubated Newborns: an Integrative Literature<br>Review. Rev Bras Ter Intensiva. 27 (3): 284-292                                                                                                                                                                                                            | V  | <ul> <li>ETT suction should only be performed if a patient has signs of tracheal secretions, rather than on a time frame basis.</li> <li>Suction pressure should remain below 100mmhg</li> <li>Hyperoxygenation should not be used on a routine basis (but if indicated only an increase of 10-20% from baseline requirement and maintained for at least 1 min after suctioning)</li> <li>Use of saline lavage should not routinely be used</li> <li>Suction timing should be limited to 15 secs</li> </ul> |
| Tume, L., Baines, P., Guerrero, R., Hurley, M.,<br>Johnson, R., Kalantre, A., Ramaraj, R., Ritson, P.,<br>Walsh, L., & Arnold, P. (2017). Pilot Study<br>Comparing Closed Versus Open Tracheal<br>Suctioning in Postoperative Neonates and Infants<br>With Complex Congenital Heart Disease. <i>Pediatric</i><br><i>Critical Care Medicine</i> , 18(7), 647-654. | 11 | <ul> <li>Closed system suctioning has also been shown to reduce the adverse<br/>physiological effects related to suction including hypoxia, bradycardia,<br/>desaturation and hypotension.</li> </ul>                                                                                                                                                                                                                                                                                                       |

| Tahei, P., Asgari, N., Mohammadizadeh, M., &<br>Golchin, M. (2012). The effect of open and closed<br>endotracheal tube suctioning system on<br>respiratory parameters of infants undergoing<br>mechanical ventilation. <i>Iraninan Journal of</i><br><i>Nursing and Midwifery Reasearch</i> , 17(1), 26-29 |    | Closed system suctioning was shown to be preferable to open suctioning<br>as it results in improved stabilisation of oxygenation during and post<br>suctioning                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hess, R., Kallstrom, J., Mottram, C., Myers, T.,<br>Sorenson, H., Vines, D. (2003).Care of the<br>ventilator circuit and its relation to ventilator-<br>associated pneumonia. <i>American Association for</i><br><i>Respiratory Care</i> , <i>48</i> (9). 869-79                                           | 11 | <ul> <li>Closed suctioning also reduces the risk for contamination with<br/>environmental pathogens, reduces viral and bacterial colonisation<br/>within the ventilation circuit and it also safely protects nursing and<br/>medical staff from exposure to patient bodily fluids.</li> <li>Closed suction catheters do not need to be changed on a daily basis for<br/>the purpose of infection control</li> </ul>                 |
| Evans, J., Syddall, S., Butt, W., & Kinney, S. (2014).<br>Comparison of open and closed suction on safety,<br>efficacy and nursing time in a paediatric intensive<br>care unit. <i>Australian Critical Care</i> , 27. 70-74.                                                                               |    | <ul> <li>Closed suction caused fewer disturbances to a patients haemodynamic<br/>state, took less time and could be safely performed by one registered<br/>nurse.</li> </ul>                                                                                                                                                                                                                                                        |
| Bruschettini, M., Zappettini, S., Moja, L & Calevo,<br>M. G,. (March 2016) Frequency of endotracheal<br>suctioning for the prevention of respiratory<br>morbidity in Ventilated newborns. Cochrane<br>Database of Systematic Reviews,                                                                      | I  | <ul> <li>No statistical difference between 6hrly and 12hrly regular suctioning intervals.</li> <li>Not sufficient evidence to suggest the ideal frequency for suctioning ventilated neonatal patients.</li> </ul>                                                                                                                                                                                                                   |
| Taylor, JE., Hawley, G., Flenady, V & Woodgate,<br>P.G., (December 2011)<br>Tracheal suctioning without disconnection in<br>intubated ventilated neonates. <i>Cochrane</i><br><i>Database of Systematic Reviews</i> , 11.                                                                                  | 1  | <ul> <li>Reduction in episodes of hypercarbia were a result in the suction procedure without disconnection from ventilator circuit</li> <li>Percentage of heart rate change was smaller if suction was performed without disconnection</li> <li>Improvements in stability of patients in a suction technique was only small and so this should not be the only technique used to suction endotracheal tubes for neonates</li> </ul> |

| Deep versus shallow suction of endotracheal<br>tubes in ventilated neonates and young infants<br>(2011 Review). Spence, K., Gillies, D,. Cochrane<br>Database of Systematic Reviews, 7. | 1   | <ul> <li>Not enough evidence to support deep suctioning</li> <li>American Association for respiratory Care Guidelines 2010 supports the practice of shallow suctioning techniques for infant and paediatric patients.</li> </ul>                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bunnell, Clinical Considerations for the Bunnell<br>LifePulse High-Fequency Ventilator (2018)                                                                                           | VII | <ul> <li>Guidelines for suctioning during HFJV</li> <li>Procedure for suctioning: Place LifePulse in standby (this step prevents<br/>LifePulse alarms from shutting down the ventilator during suctioning.<br/>When finished suctioning, press the ENTER button to restart the<br/>LifePulse.</li> </ul> |